A SITE-SPECIFIC METHOD FOR DEUTERATION: REDUCTION OF ARYL HALIDES WITH SODIUM BORODEUTERIDE AND PALLADIUM CHLORIDE T. R. Bosin^{*}, M. G. Raymond and A. R. Buckpitt Department of Pharmacology, Medical Sciences Program Indiana University, Bloomington, Indiana 47401

(Received in USA 10 August 1973; received in UK for publication 11 October 1973)

Sodium borohydride-transition metal systems produce reductions not achieved by sodium borohydride alone,^{1,2} such as dehalogenation of aryl halides. The demand for deuterium labeled compounds in organic chemical³ and biomedical⁴ research stimulated us to develop a convenient method for introducing a deuterium atom into an aromatic system. With the appropriate choice of aryl halide, a wide variety of specifically deuterated aromatic compounds can be prepared (Table 1).

The following procedure for the preparation of 4-deuterobenzoic acid is representative. A dry 25 ml roundbottom flask was flushed with nitrogen and immersed in a water bath at 20° . 4-Chlorobenzoic acid-d₁ (0.157 g, 1.0 mmole), prepared by successive dioxane-D₂O exchanges, was dissolved in 7.0 ml of methanol-d₁ and then solid palladium chloride (0.355 g, 2.0 mmoles) was added. Solid sodium borodeuteride (98% D) (0.418 g, 10.0 mmoles) was then added in small portions to the stirred solution and stirring was continued for 1 hr. The reaction mixture was poured into 80 ml of water containing 5 ml of 5N hydro-chloric acid. Extraction of the aqueous phase with 3 X 30 ml of ethyl ether, drying the combined ether extracts with anhydrous MgSO₄, filtration, and removal of the ether under reduced pressure, yielded the crude product. Recrystallization from water gave 0.102 g, 83% of colorless plates, mp 122°; nmr (CDCl₃) & 7.73 (q, 4, J=4Hz, aromatic) and δ 12.06 (s, 1, COOH).

The data in Table 1 shows the greater ease of deuteration of <u>ortho</u> and <u>para</u> substituted aryl halides relative to the corresponding <u>meta</u> derivative, and the greater reactivity of bromo as opposed to chloro derivatives.

4699

COMPOUND DEUTERATED	TEMPERATURE	% Yield ^a	<u>% DEUTERIUM</u> b
2-Bromobenzoic acid	20°	70	>95
2-Chlorobenzoic acid	20 ⁰	62	>95
3-Chlorobenzoic acid	20 [°]	48	>95
4-Chlorobenzoic acid	20°	83	>95
3,4-Dichlorobenzoic acid	20°	55	>95
3-Bromoanisole	2 0 °	46	>95
4-Chloronitrobenzene ^C	-10°	70	>95
3-Bromobenzo[b]thiophene ^d	-10°	70	>95
5-Bromoindole ^d	-10°	85	>95
4-Chlorophenoxyacetic acid	20°	73	>95
1-(4-Chlorophenyl)-2-methyl-	20 ⁰	85	>95
aminopropane			

TABLE 1

SITE-SPECIFIC DEUTERIUM LABELING

^a All compounds were pure by GLC and gave mass spectra consistent with their structures. ^b Determined by 100 MHz nmr which gave splitting patterns consistent with deuterium incorporation at the site of the halogen in the starting material. ^C The deuterated product was 4-deuteroaniline. ^d Small amounts (3-5%) of dihydro products were obtained at 20° .

<u>ACKNOWLEDGEMENTS</u>: This work was supported by Public Health Service Research Grant NS-09672, and an American Foundation for Pharmaceutical Education Fellowship to A.R.B.

REFERENCES

- 1. T. Satoh and S. Suzuki, Tetrahedron Letters, 4555 (1969).
- 2. R. A. Egli, <u>Helv. Chim. Acta</u>, <u>51</u>, 2090 (1968).
- A. F. Thomas, "Deuterium Labeling in Organic Chemistry," Appleton-Century-Crofts, New York, 1971.
- 4. D. R. Knapp and T. E. Gaffney, Clin. Pharmacol. Therap., 13, 307 (1972).